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INTRODUCTION 

Gerdau Monroe has installed and commissioned the Tallman Supersonic Carbon Injection system (TSCi™) for use in their 

135-ton Electric Arc Furnace (EAF) located in Monroe, MI.  TSCi™ is an innovative injection system with the primary aim 

of improving injection carbon delivery to the steel bath by increasing efficiency.  It is proven technology with installations at 

numerous steelmaking facilities all over the world.  Results from installation and commissioning of TSCi™ at Gerdau 

Monroe will be reported as well as on-going trials and optimization efforts. 

 

Standard injection systems deliver carbonaceous material from a vessel to the EAF using air where it is injected through a 

lance pipe or oxy-fuel burner.  Using this method, material delivery to the EAF is limited by the pressure and velocity of the 

transport air.  Loss of efficiency can be observed by looking at the quality of the injection carbon stream during operation or 

by measuring loss on ignition of EAF slag or off-gas system dust. 

 

TSCi™ uses a patented design and proprietary technology to improve delivery of carbonaceous material to the EAF.  Using 

this method, savings at Gerdau Monroe were realized by reducing the amount of carbon used in each heat while maintaining 

or improving upon existing foamy slag practice.  As well, significant savings were achieved as a result of reduced FeO 

content in the slag and improved recovery of iron.  Additional savings can be realized by using a smaller mesh material to 

take advantage of lower material cost and higher injected surface area.  Other inherent benefits to improved injection carbon 

include lower energy and electrode consumption, reduced refractory wear and reduced maintenance cost.   

 

 

DISCUSSION 

Current Operations 

The majority of Electric Arc Furnace operations inject carbonaceous material using ‘Dense Phase’ conveying.  Material 

transported by this method is stored in a pressure vessel and compressed air forces it into the conveying line for delivery to 

the EAF.  Supplementary air injectors can be added along the conveying line to maintain conveying velocity, overcome 

resistance from long distances and minimize line plugging.  This method for conveying carbonaceous material is 

characterized by high pressure and low velocity. 

Once at the EAF, material is injected through pipes and/or oxy-fuel burners.  Regardless of design, these methods utilize a 

straight pipe design and material delivery to the EAF is accomplished by ‘pushing’ the carbon material through the system, 

down the straight-walled pipe and into the EAF.  Thus, delivery of material is limited by the pressure difference between the 

injection system and the EAF atmosphere as well as the velocity of the transport air. 

As a result, efficiency of delivery of carbonaceous material is reduced.  There is insufficient pressure to overcome the EAF 

atmosphere and insufficient velocity for material to be delivered efficiently to the slag or slag-metal interface.  By this 

method, injected material (particularly smaller particle sizes) is lost to the fume system or combusted in the freeboard and 

material that does reach the slag tends to sit on top.  Increasing the air pressure in the line will not improve the situation 

greatly as it will result in increased wear of supply hoses, increased demand of air from compressors, and little change in the 

pressure difference or velocity of the material entering the EAF. 



‘Dilute Phase” conveying can also be used where material transported by this method is fed into an air stream created by a 

blower fan.  Particles are trapped in the air stream for delivery to the EAF.  This method for conveying is characterized by 

low pressure and high velocity.  Higher velocity of the injected carbon improves delivery to the slag but lower pressure than 

‘Dense Phase’ conveying still results in loss of efficiency due to material being lost to the fume system or combusted in the 

freeboard.  Additionally, ‘Dilute Phase’ conveying over long distances typically seen in steelmaking operations, particularly 

where multiple points of injection are required, would generally result in high maintenance requirements on conveying pipe, 

fittings and elbows due to higher velocities and increased potential for abrasion. 

Figure 1 shows a typical example of carbonaceous material being injected into an EAF.  It can be seen that as the material is 

injected, the shape of the stream increases in size as a result of the pressure difference between the conveying stream and the 

EAF atmosphere.  Under these circumstances, material delivery efficiency is lost as there is insufficient ‘push’ to deliver 

carbon to the slag or slag-metal interface to initiate foaming.  In most cases, finer carbon particles are combusted in the 

freeboard or simply lost to the fume system.  The exiting material is travelling at subsonic speeds, which quickly spreads into 

a cloud. 

 

     Figure 1. Injection of Carbonaceous Material into EAF using Straight Pipe Method 

Tallman Supersonic Carbon Injector (TSCi™) 

TSCi™ uses a patented design and proprietary technology to improve delivery of carbonaceous material to the EAF.  The 

TSCi™ has three (3) primary inputs. Carbon is supplied to the unit via the “Carbon-In” port; the existing supply hose is 

attached to this port. Inert gas (typically air or nitrogen) is supplied to 2 input connections, “Shroud Air” port and “Transport 

Air” port. These can be separate lines to the air supply, or a T connection can be used to split a single air source and feed it to 

both air connections on the TSCi™ through pressure regulators. (See Figure 2). 

 

Figure 2. TSCi™ – Operational Schematic 
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Supply air travels through a designed de Laval nozzle, creating a supersonic jet with approximately MACH 2 value. While 

the supplied injection carbon is being pushed by pressure from the holding tank, the supersonic jet creates a venturi effect and 

the resultant negative pressure draws injection carbon into the Carbon Chamber. 

The injection carbon entering the Carbon Chamber enters into the supersonic jet path and is accelerated down the Barrel. 

Injection carbon travels through the central pipe and upon exiting the pipe is shrouded by an annular supersonic jet created by 

air from the Shroud Air Port. The annular supersonic jet prevents the spread of injection carbon from the stream.  Figure 3 

shows a comparison between an existing injection system and the TSCi™.  It can be seen that the injected material travels a 

much greater distance with little degradation of the stream. 

 

Figure 3. Straight Pipe Carbon Injector (Left) versus TSCITM 

Installation at Gerdau Monroe 

One (1) TSCi™ was installed at Gerdau Monroe in January 2016.  A second injector was installed in April 2016.  Details of 

the installation can be seen in Figure 4.  

 

Figure 4. Top view of EAF at Gerdau Monroe 

For injection carbon material, Gerdau Monroe has used Metallurgical Coke, Anthracite and Petroleum Coke depending on 

cost and uses the finest sizes available (Metallurgical Coke = Breeze (1/4” x 0”), Anthracite = Buckwheat #5 (3/64” x 0”), 
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Petroleum Coke = 10 Mesh (2 mm x 0)).  The finest size of injection carbon material is preferred as foamy slag formation is 

directly proportional to higher surface area of carbon particles.   

Results from Gerdau Monroe for total carbon consumption are shown in Figure 5.  From February to May 2016, we see a 

decrease in injection carbon consumption of approximately 20% from the established baseline and a decrease in charge 

carbon consumption of approximately 32% from the established baseline.  During this period, a second injector was installed 

(April 2016).   

Following the installation of the second TSCi™, a process change initiative was taken at Gerdau Monroe to significantly 

reduce or eliminate charge carbon usage.  This initiative was taken due to poor recovery of charge carbon and higher 

efficiency of injected carbon.  From June 2016 to December 2016, we see an increase in injection carbon consumption of 

approximately 18% from the established baseline and a decrease in charge carbon of approximately 85% from the established 

baseline.   

 

Figure 5. Carbon Consumption at Gerdau Monroe vs. Established Baseline 

Figure 6 shows FeO content in the slag at Gerdau Monroe compared to the established baseline.  It can be seen that during 

the time of operation of TSCi™ at Gerdau Monroe, there has been a decrease of 3.0% in FeO content.   

 

Figure 6. FeO Content in EAF Slag at Gerdau Monroe vs. Established Baseline 



While the entirety of these improvements cannot be definitively attributed to TSCi™ and improved efficiency of injection 

carbon, with TSCi™, it was possible to efficiently deliver injection carbon to the slag and slag-metal interface, reducing 

losses and allowing for a reduction in the total carbon consumption in the EAF.  In fundamental terms, the rate of 

decarburization in the EAF can be described by the following equation: 

𝑑%𝐶

𝑑𝑡
=  

𝑚𝐶 ∗ (%𝐶𝐵𝑎𝑡ℎ − %𝐶𝑒𝑞)

ℎ
 

Equation 1. Rate of Change in % Carbon with Timei 

Where, mC is the mass transfer coefficient and h is the depth of the bath.  The rate of decarburization is proportional to the 

difference of the bath carbon %Cbath and the equilibrium carbon %Ceq as determined by the oxygen activity where mC, h and 

oxygen activity are all dependent on the specific EAF.  Pretorius et al. simulated the principle of decarburization in the EAF 

which serves to describe the reduction in carbon consumption and FeO content seen at Gerdau Monroe. 

 

Figure 7. Simulation of EAF refining periodii

As refining time increases, the decarburization mechanism becomes dependent on mass transfer (or diffusion) of carbon to 

areas where oxygen can initiate a reaction.  In this case, the amount of oxygen injected to the bath will only serve to oxidize 

iron, increasing FeO content in the slag with little decarburization benefit.  Increasing carbon content in the bath (and slag) 

becomes the only way to effectively generate carbon monoxide for slag foaming and FeO reduction.  As charge carbon is 

used to attempt to increase the carbon content in the bath but has dramatically variable efficiency, it is clear that injecting 

carbon to the slag-metal interface is preferable to charge carbon use in influencing the carbon content in the bath (and slag). 

Direct benefits such as reduction of carbon consumption and FeO content are not the only benefits with improved carbon 

injection efficiency.  Figure 8 shows Electrical Energy Consumption at Gerdau Monroe compared to the established baseline. 



 

Figure 8. Electrical Energy Consumption at Gerdau Monroe vs. Established Baseline 

It can be seen that during the time of operation of TSCi™ at Gerdau Monroe, there has been a decrease of 1.8% in electrical 

energy consumption.  While the entirety of this improvement cannot be attributed to improved efficiency of injection carbon, 

the results can also be seen in improved arc stability, particularly during times when foamy slag is critical (flat bath).  The 

benefits of foamy slag practice in Electric Arc Furnace steelmaking are well documented.  Figure 9 shows these benefitsiii. It 

is critical to the steelmaker to have good foamy slag practice and efficient delivery of injection carbon to the slag only serves 

to improve the practice. 

 

  

Figure 9. Established Benefits of Foamy Slag on Electrical Energy Consumption in EAF Steelmaking 

CONCLUSIONS 

The combination of the central jet and the annular supersonic jet in the TSCi™ allows the injection carbon to travel farther 

into the EAF with increased momentum than standard ‘straight pipe’ injection. This improves carbon usage efficiency as 

there is less carbon lost to the off-gas system due to not reaching the slag or slag-metal interface.  Initial results at Gerdau 

Monroe showed a reduction in injection carbon consumption of approximately 20% along with a reduction in charge carbon 

of approximately 32% compared to established baseline.  A change in process has led to a significant decrease charge carbon 

consumption with an increase in injection carbon consumption while maintaining gains in electrical energy consumption and 

reducing FeO content in the slag. 
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